Embedded computing needs

fanless computers, Panel PC, single board computer

Understanding and selecting analog IP can be risky, but engineers today have more choices and more control than they think. Knowing how to manage the IP selection process can help engineers effectively meet objectives and reduce risk.

As digital design has proliferated the electronics world, making designs faster, easier to test, and more robust, the analog portion of embedded designs is becoming a bottleneck. To meet requirements and timetables in the analog portion, engineers generally have three weapons at their disposal: utilize peripheral analog IC, build the functionality internally (make), or purchase the IP block from an external vendor (buy). Each option has its own merits and drawbacks, but none can launch a competitive advantage better or cause more frustrating confusion than analog IP.

Traditionally, these options only apply to ASIC builds, as FPGAs are not compatible with analog IP. However, this is changing quickly. Some IP companies now provide all Register Transfer Language (RTL)-based Analog-to-Digital Converter (ADC), Digital-to-Analog Converter (DAC), DC-DC converter controller, and clocking functions with robust performance.

 

 

Refer:

http://embedded-computing.com/articles/understanding-analog-cores-embedded-computing-needs/

3.5 inch embedded single board computer with Atom N2800

industrial computers, Panel PC, single board computer
 

AMB-N280S1, which carries Intel dual- core 1.8 GHz Atom Processor N2800. acrosser takes advantage of Atom Cedar Trail N2000 series processor in design, such as low power consumption and small footprint as former Atom series.

Intel Atom Processor N2800 provides more powerful graphic performance by less power consumption. AMB-N280S1 can support both two displays to maximum resolution 1920 x 1200. It also offers the 18-bit LVDS interface for small size LCD panel.